Тема. Потенциальная энергия

Обозначающего «действие». Можно назвать энергичным человека, который двигается, создает определенную работу, может творить, действовать. Также энергией обладают машины, созданные людьми, живая и природа. Но это в обычной жизни. Помимо этого, есть строгая , определившая и обозначившая многие виды энергии – электрическую, магнитную, атомную и пр. Однако сейчас речь пойдет о потенциальной энергии, которую нельзя рассматривать в отрыве от кинетической.

Кинетическая энергия

Этой энергией, согласно представлениям механики обладают все тела, которые взаимодействуют друг с другом. И в данном случае речь идет о движении тел.

Потенциальная энергия

В данный вид энергии создается, когда происходит взаимодействие тел или частей одного тела, но при этом нет движения как такового. В этом главное отличие от кинетической энергии. К примеру, если поднять камень над землей и удержать в этом положении, он будет иметь потенциальную энергию, которая может перейти в кинетическую, если камень отпустить.

Обычно энергию связывают с работой. То есть в данном примере отпущенный камень может произвести некоторую работу при падении. А возможная величина работы будет равна потенциальной энергии тела при определенной высоте h. Для вычисления данной энергии применяется следующая формула:

A=Fs=Fт*h=mgh, или Eп=mgh, где:
Eп - потенциальная энергия тела,
m - масса тела,
h - высота тела над поверхностью земли,
g - ускорение свободного падения.

Два вида потенциальной энергии

У потенциальной энергии различается два вида:

1. Энергия при взаимном расположении тел. Такой энергией обладает подвешенный камень. Интересно, но потенциальной энергией обладают и обычные дрова или уголь. В них содержится не окисленный углерод, который может окислиться. Если сказать проще, сгоревшие дрова потенциально могут нагреть воду.

2. Энергия упругой деформации. Для примера здесь можно привести эластичный жгут, сжатую пружину или система «кости-мышцы-связки».

Потенциальная и кинетическая энергия взаимосвязаны. Они могут переходит друг в друга. К примеру, если подбросить камень вверх, при движении сначала он обладает кинетической энергией. Когда он достигнет определенной точки, то на мгновение замрет и получит потенциальную энергию, а затем гравитация потянет его вниз и снова возникнет кинетическая энергия.

Кинетическая энергия механической системы - это энергия механического движения этой системы.

Сила F , действуя на покоящееся тело и вызывая его движение, совершает рабо­ту, а энергия движущегося тела возраста­ет на величину затраченной работы. Таким образом, работа dA силы F на пути, кото­рый тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dT тела, т. е.

Используя второй закон Ньютона F =mdv /dt

и умножая обе части равен­ства на перемещение dr , получим

F dr =m(dv /dt)dr=dA

Таким образом, тело массой т, движущее­ся со скоростью v, обладает кинетической энергией

Т = т v 2 /2. (12.1)

Из формулы (12.1) видно, что кинети­ческая энергия зависит только от массы и скорости тела, т. е. кинетическая энергия системы есть функция состояния ее дви­жения.

При выводе формулы (12.1) предпола­галось, что движение рассматривается в инерциальной системе отсчета, так как иначе нельзя было бы использовать за­коны Ньютона. В разных инерциальных системах отсчета, движущихся друг отно­сительно друга, скорость тела, а следова­тельно, и его кинетическая энергия будут неодинаковы. Таким образом, кинетиче­ская энергия зависит от выбора системы отсчета.

Потенциальная энергия - механиче­ская энергия системы тел, определяемая их взаимным расположением и характе­ром сил взаимодействия между ними.

Пусть взаимодействие тел осуществля­ется посредством силовых полей (напри­мер, поля упругих сил, поля гравитацион­ных сил), характеризующихся тем, что работа, совершаемая действующими сила­ми при перемещении тела из одного поло­жения в другое, не зависит от того, по какой траектории это перемещение прои­зошло, а зависит только от начального и конечного положений. Такие поля на­зываются потенциальными, а силы, дей­ствующие в них,- консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; ее примером является си­ла трения.

Тело, находясь в потенциальном поле сил, обладает потенциальной энергией II. Работа консервативных сил при элемен­тарном (бесконечно малом) изменении конфигурации системы равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:

Работа dА выражается как скалярное произведение силы F на перемещение dr и выражение (12.2) можно записать в виде

F dr =-dП. (12.3)

Следовательно, если известна функция П(r ), то из формулы (12.3) можно найти силу F по модулю и направлению.

Потенциальная энергия может быть определена исходя из (12.3) как

где С - постоянная интегрирования, т. е. потенциальная энергия определяется с точностью до некоторой произвольной по­стоянной. Это, однако, не отражается на физических законах, так как в них входит или разность потенциальных энергий в двух положениях тела, или производная П по координатам. Поэтому потенциаль­ную энергию тела в каком-то определен­ном положении считают равной нулю (вы­бирают нулевой уровень отсчета), а энер­гию тела в других положениях отсчитыва­ют относительно нулевого уровня. Для консервативных сил

или в векторном виде

F =-gradП, (12.4) где

(i, j, k - единичные векторы координат­ных осей). Вектор, определяемый выраже­нием (12.5), называется градиентом ска­ляра П.

Для него наряду с обозначением grad П применяется также обозначение П.  («набла») означает символический вектор, называе­мый оператором Гамильтона или набла-оператором:

Конкретный вид функции П зависит от характера силового поля. Например, по­тенциальная энергия тела массой т, под­нятого на высоту h над поверхностью Зем­ли, равна

П = mgh, (12.7)

где высота h отсчитывается от нулевого уровня, для которого П 0 = 0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести при падении тела с высоты h на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (ки­нетическая энергия всегда положитель­на!}. Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне шахты (глубина h"), П= - mgh".

Найдем потенциальную энергию упругодеформированного тела (пружины). Сила упругости пропорциональна дефор­мации:

F х упр = -kx,

где F x упр - проекция силы упругости на ось х; k - коэффициент упругости (для пружины - жесткость), а знак минус ука­зывает, что F x упр направлена в сторону, противоположную деформации х.

По третьему закону Ньютона, дефор­мирующая сила равна по модулю силе упругости и противоположно ей направле­на, т. е.

F x =-F x упр =kx Элементарная работа dA, совершаемая силой F x при бесконечно малой деформации dx, равна

dA = F x dx = kxdx,

а полная работа

идет на увеличение потенциальной энергии пружины. Таким образом, потенциальная энергия упругодеформированного тела

П=kx 2 /2.

Потенциальная энергия системы, подо­бно кинетической энергии, является функ­цией состояния системы. Она зависит толь­ко от конфигурации системы и ее положе­ния по отношению к внешним телам.

Полная механическая энергия систе­мы - энергия механического движения и взаимодействия:

т. е. равна сумме кинетической и потен­циальной энергий.

25.12.2014

Урок 32 (10 класс)

Тема. Потенциальная энергия

1. Работа силы тяжести

Вычислим работу, используя в этот раз не второй закон Ньютона, а явное выражение для сил взаимодействия между телами в зависимости от расстояний между ними. Это позволит нам ввести понятие потенциальной энергии - энергии, зависящей не от скоростей тел, а от расстояний между телами (или от расстояний между частями одного и того же тела).
Вычислим сначала работу силы тяжести при падении тела (например, камня) вертикально вниз. В начальный момент времени тело находилось на высотеh 1 над поверхностью Земли, а в конечный момент времени - на высотеh 2 (рис.6.5 ). Модуль перемещения тела .

Направления векторов силы тяжести и перемещения совпадают. Согласно определению работы (см. формулу (6.2)) имеем

Пусть теперь тело бросили вертикально вверх из точки, расположенной на высоте h 1 , над поверхностью Земли, и оно достигло высоты h 2 (рис.6.6 ). Векторы и направлены в противоположные стороны, а модуль перемещения . Работу силы тяжести запишем так:

Если же тело перемещается по прямой так, что направление перемещения составляет угол с направлением силы тяжести (рис.6.7 ), то работа силы тяжести равна:

Из прямоугольного треугольника BCD видно, что . Следовательно,

Формулы (6.12), (6.13), (6.14) дают возможность подметить важную закономерность. При прямолинейном движении тела работа силы тяжести в каждом случае равна разности двух значений величины, зависящей от положений тела в начальный и конечный моменты времени. Эти положения определяются высотами h 1 и h 2 тела над поверхностью Земли.
Более того, работа силы тяжести при перемещении тела массой m из одного положения в другое не зависит от формы траектории, по которой движется тело. Действительно, если тело перемещается вдоль кривой ВС (рис.6.8 ), то, представив эту кривую в виде ступенчатой линии, состоящей из вертикальных и горизонтальных участков малой длины, увидим, что на горизонтальных участках работа силы тяжести равна нулю, так как сила перпендикулярна перемещению, а сумма работ на вертикальных участках равна работе, которую совершила бы сила тяжести при перемещении тела по вертикальному отрезку длиной h 1 -h 2 .

Таким образом, работа при перемещении вдоль кривой ВС равна:

При движении тела по замкнутой траектории работа силы тяжести равна нулю. В самом деле, пусть тело движется по замкнутому контуру ВСDМВ (рис.6.9 ). На участках ВС и сила тяжести совершает работы, равные по абсолютной величине, но противоположные по знаку. Сумма этих работ равна нулю. Следовательно, равна нулю и работа силы тяжести на всем замкнутом контуре.

Силы, обладающие такими свойствами, называют консервативными .
Итак, работа силы тяжести не зависит от формы траектории тела; она определяется лишь начальным и конечным положениями тела. При перемещении тела по замкнутой траектории работа силы тяжести равна нулю.

2. Работа силы упругости

Подобно силе тяжести, сила упругости тоже является консервативной. Чтобы убедиться в этом, вычислим работу, которую совершает пружина при перемещении груза.
На рисунке 6.10, а показана пружина, у которой один конец закреплен неподвижно, а к другому концу прикреплен шар. Если пружина растянута, то она действует на шар с силой (рис.6.10,б ), направленной к положению равновесия шара, в котором пружина не деформирована. Начальное удлинение пружины равно . Вычислим работу силы упругости при перемещении шара из точки с координатой x 1 в точку с координатой x 2 . Из рисунка 6.10, в видно, что модуль перемещения равен:

где - конечное удлинение пружины.

Вычислить работу силы упругости по формуле (6.2) нельзя, так как эта формула справедлива лишь для постоянной силы, а сила упругости при изменении деформации пружины не остается постоянной. Для вычисления работы силы упругости воспользуемся графиком зависимости модуля силы упругости от координаты шара (рис.6.11 ).

При постоянном значении проекции силы на перемещение точки приложения силы ее работа может быть определена по графику зависимости F x от x и что эта работа численно равна площади прямоугольника. При произвольной зависимости F x от x , разбивая перемещение на малые отрезки, в пределах каждого из которых силу можно считать постоянной, увидим, что работа будет численно равна площади трапеции.
В нашем примере работа силы упругости на перемещении точки ее приложения численно равна площади трапеции ВCDM . Следовательно,

Согласно закону Гука и . Подставляя эти выражения для сил в уравнение (6.17) и учитывая, что , получим

Или окончательно

Мы рассмотрели случай, когда направления силы упругости и перемещения тела совпадали: . Но можно было бы найти работу силы упругости, когда ее направление противоположно перемещению тела или составляет с ним произвольный угол, а также при перемещении тела вдоль кривой произвольной формы.
Во всех этих случаях движения тела под действием силы упругости мы пришли бы к той же формуле для работы (6.18). Работа сил упругости зависит лишь от деформаций пружины и в начальном и конечном состояниях.
Таким образом, работа силы упругости не зависит от формы траектории и, так же как и сила тяжести, сила упругости является консервативной.

3. Потенциальная энергия

Используя второй закон Ньютона, что в случае движущегося тела работа сил любой природы может быть представлена в виде разности двух значений некоторой величины, зависящей от скорости тела, - разности между значениями кинетической энергии тела в конечный и начальный моменты времени:

Если же силы взаимодействия между телами являются консервативными, то, используя явные выражения для сил, мы показали, что работу таких сил можно также представить в виде разности двух значений некоторой величины, зависящей от взаимного расположения тел (или частей одного тела):

Здесь высоты h 1 иh 2 определяют взаимное расположение тела и Земли, а удлинения и - взаимное расположение витков деформированной пружины (или значения деформаций другого упругого тела).
Величину, равную произведению массы тела m на ускорение свободного падения g и на высоту h тела над поверхностью Земли, называют потенциальной энергией взаимодействия тела и Земли (от латинского слова «потенция» - положение, возможность).
Условимся обозначать потенциальную энергию буквой Е п :

Величину, равную половине произведения коэффициента упругости k тела на квадрат деформации , называют потенциальной энергией упруго деформированного тела :

В обоих случаях потенциальная энергия определяется расположением тел системы или частей одного тела относительно друг друга.
Введя понятие потенциальной энергии, мы получаем возможность выразить работу любых консервативных сил через изменение потенциальной энергии. Под изменением величины понимают разность между ее конечным и начальным значениями, поэтому .
Следовательно, оба уравнения (6.20) можно записать так:

откуда .
Изменение потенциальной энергии тела равно работе консервативной силы, взятой с обратным знаком.
Эта формула позволяет дать общее определение потенциальной энергии.
Потенциальной энергией системы называется зависящая от положения тел величина, изменение которой при переходе системы из начального состояния в конечное равно работе внутренних консервативных сил системы, взятой с противоположным знаком.
Знак «-» в формуле (6.23) не означает, что работа консервативных сил всегда отрицательна. Он означает лишь, что изменение потенциальной энергии и работа сил в системе всегда имеют противоположные знаки.
Например, при падении камня на Землю его потенциальная энергия убывает , но сила тяжести совершает положительную работу (A >0). Следовательно, A и имеют противоположные знаки в соответствии с формулой (6.23).
Нулевой уровень потенциальной энергии. Согласно уравнению (6.23) работа консервативных сил взаимодействия определяет не саму потенциальную энергию, а ее изменение.
Поскольку работа определяет лишь изменение потенциальной энергии, то только изменение энергии в механике имеет физический смысл. Поэтому можно произвольно выбрать состояние системы, в котором ее потенциальная энергия считается равной нулю. Этому состоянию соответствует нулевой уровень потенциальной энергии. Ни одно явление в природе или технике не определяется значением самой потенциальной энергии. Важна лишь разность значений потенциальной энергии в конечном и начальном состояниях системы тел.
Выбор нулевого уровня производится по-разному и диктуется исключительно соображениями удобства, т. е. простотой записи уравнения, выражающего закон сохранения энергии.
Обычно в качестве состояния с нулевой потенциальной энергией выбирают состояние системы с минимальной энергией. Тогда потенциальная энергия всегда положительна или равна нулю.
Итак, потенциальная энергия системы «тело - Земля» - величина, зависящая от положения тела относительно Земли, равная работе консервативной силы при перемещении тела из точки, где оно находится, в точку, соответствующую нулевому уровню потенциальной энергии системы.
У пружины потенциальная энергия минимальна в отсутствие деформации, а у системы «камень - Земля» - когда камень лежит на поверхности Земли. Поэтому в первом случае , а во втором случае . Но к данным выражениям можно добавить любую постоянную величину C , и это ничего не изменит. Можно считать, что .
Если во втором случае положить , то это будет означать, что за нулевой уровень энергии системы «камень - Земля» принята энергия, соответствующая положению камня на высоте h 0 над поверхностью Земли.
Изолированная система тел стремится к состоянию, в котором ее потенциальная энергия минимальна.
Если не удерживать тело, то оно падает на землю (h =0); если отпустить растянутую или сжатую пружину, то она вернется в недеформированное состояние .
Если силы зависят только от расстояний между телами системы, то работа этих сил не зависит от формы траектории. Поэтому работу можно представить как разность значений некоторой функции, называемой потенциальной энергией, в конечном и начальном состояниях системы. Значение потенциальной энергии системы зависит от характера действующих сил, и для его определения необходимо указать нулевой уровень отсчета.

Инженером и физиком Уильямом Ренкином .

Единицей измерения энергии в СИ является Джоуль .

Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии .

Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными .

Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля.

Любая физическая система стремится к состоянию с наименьшей потенциальной энергией.

Потенциальная энергия упругой деформации характеризует взаимодействие между собой частей тела.

Потенциальная энергия в поле тяготения Земли

Потенциальная энергия в поле тяготения Земли вблизи поверхности приближённо выражается формулой:

где - масса тела, - ускорение свободного падения , - высота положения центра масс тела над произвольно выбранным нулевым уровнем.

О физическом смысле понятия потенциальной энергии

  • Если кинетическая энергия может быть определена для одного отдельного тела, то потенциальная энергия всегда характеризует как минимум два тела или положение тела во внешнем поле.
  • Кинетическая энергия характеризуется скоростью; потенциальная - взаиморасположением тел.
  • Основной физический смысл имеет не само значение потенциальной энергии, а её изменение.

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Потенциальная энергия" в других словарях:

    потенциальная энергия - Энергия, которой обладает объект благодаря его положению в геопотенциальном поле. Например, потенциальная энергия первоначально расслоенного столба воды увеличивается по мере того, как энергия ветра перемешивает его и выносит более соленую… … Справочник технического переводчика

    ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ - энергия взаимодействия тел; является частью полной механической энергии физ. системы, зависящей от взаимного расположения её частиц и от их положения во внешнем силовом поле (напр. гравитационном); др. частью полной механической системы является… … Большая политехническая энциклопедия

    ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ, вид ЭНЕРГИИ, которой обладает тело, благодаря его положению на определенной высоте в ГРАВИТАЦИОННОМ ПОЛЕ Земли. Потенциальной энергией также является энергия, запасенная в такой системе, как сжатая пружина, или в… … Научно-технический энциклопедический словарь

    Часть общей механич. энергии системы, зависящая от взаимного расположения материальных точек, составляющих эту систему, и от их положений во внеш. силовом поле (напр., гравитационном; (см. ПОЛЯ ФИЗИЧЕСКИЕ). Численно П. э. системы в данном её… … Физическая энциклопедия

    потенциальная энергия - ▲ энергия сила, физическое поле < > кинетическая энергия потенциальная энергия энергия, зависящая от положения во внешнем силовом поле. ↓ калорийность. взрыв. взорваться … Идеографический словарь русского языка

    ПОТЕНЦИАЛЬНАЯ энергия, часть общей механической энергии системы, зависящая от взаимного расположения ее частиц и от их положения во внешнем силовом (например, гравитационном) поле. В сумме с кинетической энергией потенциальная энергия составляет… … Современная энциклопедия

    Потенциальная энергия - ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ, часть общей механической энергии системы, зависящая от взаимного расположения ее частиц и от их положения во внешнем силовом (например, гравитационном) поле. В сумме с кинетической энергией потенциальная энергия составляет… … Иллюстрированный энциклопедический словарь

    Часть общей механической энергии системы, зависящая от взаимного расположения ее частиц и от их положения во внешнем силовом (напр., гравитационном) поле … Большой Энциклопедический словарь

    потенциальная энергия - часть общей механической энергия системы, зависящая от взаимного расположения частиц, составляющих эту систему, и от их положения во внешнем силовом поле (например, гравитационном). Численно потенциальная энергия системы равна… … Энциклопедический словарь по металлургии

    Часть общей механической энергии системы, зависящая от взаимного расположения её частиц и от их положения во внешнем силовом (например, гравитационном) поле. * * * ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ, часть общей механической энергии… … Энциклопедический словарь

Книги

  • Потенциальная энергия электрического взаимодействия между электрическими зарядами нуклонов и объединениями нуклонов при их сближении , Ларин В.И.. В первой части книги рассматривается зависимость потенциальной энергии электрического взаимодействия между электрическими зарядами нуклонов и объединениями нуклонов от вариантов их сближения,…

Потенциальную энергию называют энергией взаимодействия физических тел или их частей между собой. Она определяется их взаимным расположением, то есть, расстоянием между ними, и равна работе, которую нужно совершить, чтобы переместить тело из точки отсчёта в другую точку в поле действия консервативных сил.

Потенциальную энергию имеет любое неподвижное физическое тело, поднятое на какую-то высоту, так как на него действует сила тяжести, являющаяся консервативной силой. Такой энергией обладает вода на краю водопада, санки на вершине горы.

Откуда же эта энергия появилась? Пока физическое тело поднимали на высоту, совершили работу и затратили энергию. Вот эта энергия и запаслась в поднятом теле. И теперь эта энергия готова для совершения работы.

Величина потенциальной энергии тела определяется высотой, на которой находится тело относительно какого-то начального уровня. За точку отсчёту мы можем принять любую выбранную нами точку.

Если рассматривать положение тела относительно Земли, то потенциальная энергия тела на поверхности Земли равна нулю. А на высоте h она вычисляется по формуле:

Е п = mɡh ,

где m – масса тела

ɡ - ускорение свободного падения

h – высота центра масс тела относительно Земли

ɡ = 9,8 м/с 2

При падении тела c высоты h 1 до высоты h 2 сила тяжести совершает работу. Эта работа равна изменению потенциальной энергии и имеет отрицательное значение, так как величина потенциальной энергии при падении тела уменьшается.

A = - (E п2 – E п1) = - ∆ E п ,

где E п1 – потенциальная энергия тела на высоте h 1 ,

E п2 - потенциальная энергия тела на высоте h 2 .

Если же тело поднимают на какую-то высоту, то совершают работу против сил тяжести. В этом случае она имеет положительное значение. А величина потенциальной энергии тела увеличивается.

Потенциальной энергией обладает и упруго деформированное тело (сжатая или растянутая пружина). Её величина зависит от жёсткости пружины и от того, на какую длину её сжали или растянули, и определяется по формуле:

Е п = k·(∆x) 2 /2 ,

где k – коэффициент жёсткости,

∆x – удлинение или сжатие тела.

Потенциальная энергии пружины может совершать работу.

Кинетическая энергия

В переводе с греческого «кинема» означает «движение». Энергия, которой физическое тело получает вследствие своего движения, называется кинетической. Её величина зависит от скорости движения.

Катящийся по полю футбольный мяч, скатившиеся с горы и продолжающие двигаться санки, выпущенная из лука стрела – все они обладают кинетической энергией.

Если тело находится в состоянии покоя, его кинетическая энергия равна нулю. Как только на тело подействует сила или несколько сил, оно начнёт двигаться. А раз тело движется, то действующая на него сила совершает работу. Работа силы, под воздействием которой тело из состояния покоя перейдёт в движение и изменит свою скорость от нуля до ν , называется кинетической энергией тела массой m .


Если же в начальный момент времени тело уже находилось в движении, и его скорость имела значение ν 1 , а в конечный момент она равнялась ν 2 , то работа, совершённая силой или силами, действующими на тело, будет равна приращению кинетической энергии тела.

∆E k = E k2 - E k1

Если направление силы совпадает с направлением движения, то совершается положительная работа, и кинетическая энергия тела возрастает. А если сила направлена в сторону, противоположную направлению движения, то совершается отрицательная работа, и тело отдаёт кинетическую энергию.

error: Content is protected !!